Full Name, Period, AP/Honors:

0 Moments of Inertia

- $I_{sphere} = \frac{2}{5}MR^2$
- $I_{rod} = \frac{1}{12}ML^2$

1 Multiple Choice

- 1. A massless rod with length 4R is rotating with angular speed ω around its center. On each side of the rod, a distance of R from the center is a mass M. The masses slide to the ends of the rod. What will be the final angular speed of the rod?
- 2. An earth sized planet is orbiting a star. At the furthest point, a distance R_{max} from the star it has velocity $v\hat{\mathbf{x}}$.
 - (a) What will be its velocity when it reaches the closest point to the star, at a distance of R_{min} ?
 - (b) Would this method work for other points in the orbit? Why or why not?
- 3. Two identical uniform solid spherical objects with radius R and moment of inertia I are initially traveling with velocities of $-v\hat{x}$ and $3v\hat{x}$. One of the spheres is initially rotating with angular velocity ω cw. The second is not spinning. They collide and stick together, forming a new sphere. The final volume at the end is the same as the total volume at the beginning. What are the final velocity and angular velocity of the resulting object?
- 4. A rod with length ℓ and mass M is initially at rest with its center at the origin. 2 identical small clay balls (also with mass M) simultaneously impact the sides of the rod. One has velocity $v\hat{x}$ and impacts at $\frac{\ell}{2}\hat{y}$. The other has velocity $-v\hat{x}$ and impacts the rod at $-\frac{\ell}{2}\hat{y}$.
 - (a) What are the final velocity of the center of mass, and angular velocity of the rod?
 - (b) Will the velocity of center of mass of the rod be the same as the velocity of the center of mass of the system? Why or why not?
 - (c) Challenge problem (very difficult): Find the final velocity of the ball that struck at the rod's end as a function of time. Use that t = 0 at the time of impact.