
Fluid Notes Draft

1 Fluids

1.1 Pressure

Pressure is often defined as the force per unit area on a surface. This is certainly true and can be taken as one
definition.

P :=
F
A

(1)

The problem you might have with this as the definition is that it isn’t obvious how to apply it to pressure in a
fluid. We can remedy this by saying that is the force per unit area that would exist on a surface if it was placed at
that location in the fluid. 1 It will be useful to us to note that pressure has units of energy density. We will then
make use of the ideal gas law

PV = nRT

We divide through by volume and note that the number of atoms N can be expressed as Avogadro’s number (Na)
multiplied by the number of moles n to get

P =
N

NaV
RT

N
V is the number density of particles and is equal to ρµ (where ρ is density and µ is molecular mass) so this becomes

P =
ρ

µNa
RT

the gas constant R is defined as Nak where k is Boltzmann’s constant

P =
ρ

µ
kT

So at least for an ideal gas, pressure is proportional to the internal energy density2 in the gas. In non ideal gases,
this equality does not hold, but pressure is still related to the internal energy of the gas. Fairly generally it is
possible to write

P = Cρe

where C is some dimensionless constant and ρe is the internal energy density at that point in the fluid.

1If you find this definition unsatisfying, you could take the thermodynamic definition (which you will not need fo this class). This definition
takes

P := ∂ E
∂ V

The ∂ denotes a derivative with respect to a variable while all other variables are held constant.
2If you are wondering what internal energy is, it is energy from the state of the fluid, so it doesn’t include stuff like gravitational potential

or kinetic energies



1.2 Pressure in a fluid

Consider a large container filled with incompressible fluid with a density ρ. We’ll ignore atmospheric pressure
for the moment. 3 Imagine that the water is composed of very thin “slices”, each of width ∆z. See figure below

The top slice will have a pressure of 0 at the top. The bottom of the first slice (or the top of the second) must
support the first slice, so we can use that to calculate the pressure there

Ms = ρA∆z

so the downward force on the bottom of the first slice is

F = ρAg∆z

we defined pressure as the force per unit area, so we divide by A to get

P1 = ρg∆z

at the bottom of the first slice. Note that the pressure will change across each slice.
The bottom of the second slice needs to support the first and second slices, so we could say that the pressure

at the bottom of the second slide is
P2 = 2ρg∆z

Now lets say that the entire column had a height of z. Since we cut it into 8 pieces, ∆z = z
8 . The bottom of the

last cell must support all 8 pieces, so the pressure must be

P = ρgz (2)

Since there was nothing special about our choice of z, this formula always gives the pressure at some distance
below the surface of a static fluid.

3If you want, you can think about ignoring atmospheric pressure as measuring the pressure relative to the atmosphere, this is called "gauge
pressure" because most pressure gauges measure pressure relative to the atmosphere.



1.3 Buoyancy

We all have some idea that some objects float in water, while other sink. You may have noticed that more dense
objects sink, while less dense objects float. Here we will explain the physics of this and try to expand. First,
consider an object that has density ρb that is less than ρw as shown in the diagram.

We know it should float, but will it float mostly under the surface or mostly above the surface? To answer this,
let’s first assume that the body of water we are floating in is so large that we don’t need to think about the change
in water level4 Consider the pressure force on the bottom of the block. The force should be given by

Fp = PA

Where A is the area of a cross section of the block. 5 We know that the pressure in a fluid is given by P = ρgz
where z is the distance below the surface. Then the pressure force on the bottom of our block (also called the
buoyant force) should be

Fp = ρw gzA (3)

We know that the block must be in force balance if it is not to accelerate. This condition gives that the pressure
force balances gravity, or

M g = ρw gzA

Which simplifies to

M = ρwAz (4)

Since the right side of this equation is the mass of the displaced water, this tells us that an object will float
such that the mass of the displaced water is equal to the mass of the object. This is called the Archimedes
Principle. We can continue by using M = ρbAL to get

ρbAL = ρwAz

We can cancel A and rearrange to finally arrive at

ρb L = ρwz

4This assumption has issues, but won’t change the force based derivation used here.
5Note that we don’t need to think about the pressure on the sides since each side will cancel with the opposite side.



z
L
=
ρb

ρw
(5)

in words, the fraction of the object that is submerged is equal to the ratio of the density of the object to the density
of water.

1.3.1 Sinking Objects

The discussion up to here was for floating objects. Sinking objects will have different behavior, specifically, the
entire volume will be under the surface. An object that is more dense than water will displace its entire
volume of water. This means the mass of the displaced water will be given by

M = ρwV

This means the buoyant force on a block that sinks will be

F = ρwV g

this must be less than the gravitational force on the object or the object would not sink.

1.4 Energy Conservation

1.4.1 Kinetic and Potential

Fluids still need to obey conservation laws. In particular, the energy of a fluid must be conserved as the fluid
moves. For the purpose of this discussion, we will ignore any effects that dissipate energy.

First lets consider a small block that is dropped off a building. It can have two types of energy, gravitational
potential (in the Earth block system) and kinetic. As the mass falls, one will convert to the other and our energy
conservation equation will look like

mgh1 +
1
2

mv2
1 = mgh2 +

1
2

mv2
2

We have done this before, of course. Now we will imagine that the small block is composed of some liquid.
Then we can write the mass of the object as

M = ρV

where V is the volume. Plugging that in and canceling V gives

ρgh1 +
1
2
ρv2

1 = ρgh2 +
1
2
ρv2

2

We could cancel ρhere, but that would lose us the clear interpretation of this as conservation of energy density.

1.4.2 Pressure in a static fluid

We already found that pressure is an energy density and that pressure is P = ρgh, where h is the distance below
the surface of the fluid. Now we want to figure out how pressure behaves in the energy density conservation
equation.



If we take a region at the top of a pool, we can immediately say that its pressure is 0 (neglecting atmospheric
pressure) and that it’s gravitational potential energy density (denoted U here) is U = ρgh. Using equation (2),
from section 1.2 we know that the pressure at the bottom of the container is P = ρgh and it’s internal energy was
0. Now imagine that we moved a small amount of water through the container very slowly (so that we can ignore
KE). It’s energy should not change as it moved. If it started at the top it would have had U = ρgh of potential
energy and no pressure. At the end it would have had P = ρgh of pressure and not potential energy. It follows
that

P1 +ρgh1 = P2 +ρgh2

Be very careful about how you apply this. Conservation of energy only guarantees that a fluids energy will be
constant as it moves, not that fluid in two different regions must have the same energy. In general, two regions
of a fluid may have different energies.

1.4.3 Bernoulli’s equation

We have now looked at how energy conservation would work between kinetic and potential and between potential
and pressure. It seems reasonable to combine them, and we can. This gives

P1 +ρgh1 +
1
2
ρv2 = P2 +ρgh2 +

1
2
ρv2 (6)

Once again, be careful to remember that this is a statement about a specific set of particles in the fluid as they
move together, not about two different regions in a fluid.

1.5 Mass Conservation

Obviously mass has been conserved in everything we have done in this class, but mass conservation was trivial
before: we just had M = M for any particle. Conservation of mass turns out to actually be useful for moving
fluids. Basically, we can restate the law of conservation of mass as

“The same amount of mass flows through any part of a pipe in the same time."



We have made the assumption here that the pipe is not filling or emptying with time, and that the fluid is
incompressible. For water pipes, these assumption are usually very accurate.

Now we just need to find an expression for the mass of the water that flows through a given cross section of
pipe. In the diagram below, we see a pipe viewed from the side and viewed head on. The pipe section will be
taken to have a length of 1m to make our argument easier to form.

The total mass of fluid in the pipe is given by M = ρV . In our case V = Al so we have

M = ρAl

. The time required for this mass to flow through the end of the pipe is

t =
l
v

This means that if we want the rate at which mass is flowing through we can divide the mass in the pipe by the
time it takes to leave. This gives

Φ=
M
t
=
ρAl

l
v

simplifying gives

Φ= ρAv (7)

We can then imagine that the pipe changes size at some point. In this case all the mass that flows through the
thick section must also flow through the thin section. This means that

ρA1v1 = ρA2v2

or, using that the density of an in compressible fluid may not change

A1v1 = A2v2 (8)

Which, depending on the source, is known either as the continuity equation, or the mass conservation equation.
Remember that we assumed that the pipe started full and remained full, if this is not the case then the mass that
enters and the mass that leaves will not be the same.

1.6 Hydraulic Systems

The property that static fluids must always have the same pressure at the same height below the surface of the fluid
has some counter-intuitive applications. Consider a system that consists of a tube filled with an incompressible
fluid6. A force F1is applied downward on a small piston with area A1. On the other side is a larger piston with
area A2. See diagram

6Water is sometimes used here, but generally special hydraulic fluids work better



Lets take a system that is small enough that ρgh is very small compared to the pressure that comes from the
pistons so we don’t need to consider that.7 Clearly the pressure must be

P =
F1

A1

since the pressure is the same everywhere
F2 = PA2

but that means that (with a bit of algebra)

F2 =
A2

A1
F1 (9)

in other words our device multiplied F1 by the ratio of the area of the pistons. This ratio can be very large,
so you might imagine that we could use this to do something like lift using a force that a human could generate.
Indeed, lifting cars by hand is a standard application of hydraulic systems.

This all seems to have a problem though. It really seems like energy should not be conserved... Lets check
that. The work done on the system by force F1 as it moves a distance z1 should be

W1 = F1z1

similarly the work done by the system on whatever we put on the larger piston should be

W2 = F2z2

we can use equation (9) to substitute in the value for F2

W2 =
A2

A1
F1z2 (10)

We know that the volume of an incompressible fluid cannot change. This means that the decrease in volume
in the right section of pipe should equal the increase in volume of the left side. The decrease in volume of the
right side is

∆V = A1z1

The increase of the left should be
∆V = A2z2

7This is extremely realistic because hydraulic systems are usually small and operate at very high pressure



setting the equations equal and solving gives

z2 =
A1

A2
z1

Now we substitute this into equation (10) This gives

W2 =
A2

A1
F1

A1

A2
z1

Which of course simplifies to
W2 = F1z1

which was our original expression for W1. Thus the system conserves energy. We can see from our analysis, that
it would not conserve energy if it behaved in any other way...


